Differential Expression of Six Rnase2 and Three Rnase3 Paralogs Identified in Blunt Snout Bream in Response to Aeromonas hydrophila Infection
نویسندگان
چکیده
Ribonucleases (Rnases)2 and Rnase3 belong to the ribonuclease A (RnaseA) superfamily. Apart from their role in molecular evolutionary and functional biological studies, these genes have also been studied in the context of defense against pathogen infection in mammals. However, expression patterns, structures and response to bacterial infection of the two genes in blunt snout bream (Megalobrama amblycephala) remain unknown. In this study, we identified multiple copies of Rnase2 (six) and Rnase3 (three) in the M. amblycephala genome. The nine genes all possess characteristics typical of the RnaseA superfamily. No expression was detected in the early developmental stages, while a weak expression was observed at 120 and 140 h post-fertilization (hpf) for Rnase2b, Rnase2c, Rnase2e and Rnase3a, suggesting that only three copies of Rnase2 and one of Rnase3 are expressed. Interestingly, only Rnase2e was up-regulated in the kidney of M. amblycephala after Aeromonas hydrophila infection, while Rnase3a was significantly up-regulated in liver, gut and blood after the infection. We conclude that the paralogs of Rnase3 are more susceptible to A. hydrophila infection than Rnase2. These results indicate that different Rnase2 and Rnase3 paralogs suggest a role in the innate immune response of M. amblycephala to bacterial infection.
منابع مشابه
Blunt Snout Bream (Megalobrama amblycephala) MyD88 and TRAF6: Characterisation, Comparative Homology Modelling and Expression
MyD88 and TRAF6 play an essential role in the innate immune response in most animals. This study reports the full-length MaMyD88 and MaTRAF6 genes identified from the blunt snout bream (Megalobrama amblycephala) transcriptome profile. MaMyD88 is 2501 base pairs (bp) long, encoding a putative protein of 284 amino acids (aa), including the N-terminal DEATH domain of 78 aa and the C-terminal TIR d...
متن کاملThe effect of Aeromonas hydrophila infection on the non-specific immunity of blunt snout bream (Megalobrama amblycephala)
Aeromonas hydrophila is the main reason of epidemic septicaemia for freshwater fish. In the present study, the effect of Aeromonas hydrophila infection on the non-specific immunity of blunt snout bream (Megalobrama amblycephala) was studied. After Aeromonas hydrophila challenge, lysozyme activity was significantly increased at 4 h, 1 d, 3 d, 5 d, 14 d and 21 d. An increased level of lysozyme ac...
متن کاملSpatio-temporal expression of blunt snout bream (Megalobrama amblycephala) mIgD and its immune response to Aeromonas hydrophila
The function of IgD in fish and mammals has not been fully understood since its discovery. In this study, we have isolated and characterized the cDNA that encodes membrane-bound form of the immunoglobulin D heavy chain gene (mIgD) of blunt snout bream (Megalobrama amblycephala) using RT-PCR and rapid amplification of cDNA ends (RACE). The full-length cDNA of mIgD consisted of 3313 bp, encoding ...
متن کاملIdentification and Characterization of MicroRNAs in the Liver of Blunt Snout Bream (Megalobrama amblycephala) Infected by Aeromonas hydrophila
MicroRNAs (miRNAs) are small RNA molecules that play key roles in regulation of various biological processes. In order to better understand the biological significance of miRNAs in the context of Aeromonas hydrophila infection in Megalobrama amblycephala, small RNA libraries obtained from fish liver at 0 (non-infection), 4, and 24 h post infection (poi) were sequenced using Illumina deep sequen...
متن کاملAssessment of Gill Pathological Responses in Yellowfin Sea Bream (Acanthopagrus Latus) Under Aeromonas Hydrophila Exposure
Bacterial diseases in cultured fish are considered the main problem with aquaculture system in Iran. The gills are multifunctional organs responsible for respiration, osmoregulation, nitrogenous waste excretion, and acid-base balance. Moreover, they are very sensitive to water contamination. Aeromonas hydrophila (A. hydrophila) is an opportunist pathogen responsible for ...
متن کامل